Predicting Cao-(Mgo)-Al2o3-Sio2 Glass Reactivity In Alkaline Environments From Force Field Molecular Dynamics Simulations

CEMENT AND CONCRETE RESEARCH(2021)

引用 13|浏览3
暂无评分
摘要
In this investigation, force field-based molecular dynamics (MD) simulations have been employed to generate detailed structural representations for a range of amorphous quaternary CaO-MgO-Al2O3-SiO2 (CMAS) and ternary CaO-Al2O3-SiO2 (CAS) glasses. Comparison of the simulation results with select experimental X-ray and neutron total scattering and literature data reveals that the MD-generated structures have captured the key structural features of these CMAS and CAS glasses. Based on the MD-generated structural representations, we have developed two structural descriptors, specifically (i) average metal oxide dissociation energy (AMODE) and (ii) average self-diffusion coefficient (ASDC) of all the atoms at melting. Both structural descriptors are seen to more accurately predict the relative glass reactivity than the commonly used degree of depolymerization parameter, especially for the eight synthetic CAS glasses that span a wide compositional range. Hence these descriptors hold great promise for predicting CMAS and CAS glass reactivity in alkaline environments from compositional information.
更多
查看译文
关键词
Molecular dynamics simulations, Amorphous aluminosilicate, Structural descriptors, Glass reactivity, X-ray and neutron scattering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要