Tilting And Distortion In Rutile-Related Mixed Metal Ternary Uranium Oxides: A Structural, Spectroscopic, And Theoretical Investigation

INORGANIC CHEMISTRY(2021)

引用 13|浏览5
暂无评分
摘要
A systematic investigation examining the origins of structural distortions in rutile-related ternary uranium AUO(4) oxides using a combination of high-resolution structural and spectroscopic measurements supported by ab initio calculations is presented. The structures of beta-CdUO4, MnUO4, CoUO4, and MgUO4 are determined at high precision by using a combination of neutron powder diffraction (NPD) and synchrotron X-ray powder diffraction (S-XRD) or single crystal X-ray diffraction. The structure of beta-CdUO4 is best described by space group Cmmm whereas MnUO4, CoUO4, and MgUO4 are described by the lower symmetry Ibmm space group and are isostructural with the previously reported beta-NiUO4 [Murphy et al. Inorg. Chem. 2018, 57, 13847]. X-ray absorption spectroscopy (XAS) analysis shows all five oxides contain hexavalent uranium. The difference in space group can be understood on the basis of size mismatch between the A(2+) and U6+ cations whereby unsatisfactory matching results in structural distortions manifested through tilting of the AO(6) polyhedra, leading to a change in symmetry from Cmmm to Ibmm. Such tilts are absent in the Cmmm structure. Heating the Ibmm AUO(4) oxides results in reduction of the tilt angle. This is demonstrated for MnUO4 where in situ S-XRD measurements reveal a second-order phase transition to Cmmm near T = 200 degrees C. Based on the extrapolation of variable temperature in situ S-XRD data, CoUO4 is predicted to undergo a continuous phase transition to Cmmm at similar to 1475 degrees C. Comparison of the measured and computed data highlights inadequacies in the DFT+U approach, and the conducted analysis should guide future improvements in computational methods. The results of this investigation are discussed in the context of the wider AUO(4) family of oxides.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要