Biochemical characteristics and membrane fouling behaviors of soluble microbial products during the lifecycle of Escherichia coli.

Water research(2021)

引用 17|浏览11
暂无评分
摘要
The complexity of production process and chemical compositions of soluble microbial products (SMPs) largely limits the understanding of membrane fouling in membrane bioreactors (MBRs). Herein, we used a model single-strain Escherichia coli to better understand the chemical natures of SMPs and their roles in membrane fouling. The effects of carbon source and growth phase on the chemical compositions of SMPs were identified at both the compound and molecular levels by using advanced techniques including excitation emission matrix and parallel factor analysis (EEM-PARAFAC), size exclusion chromatography coupled with organic carbon detection (LC-OCD), and untargeted ultra-performance liquid chromatography - Q-Exactive - mass spectrometry (UPLC-Q-Exactive-MS). Subsequently, the roles of SMPs in the propensity of membrane fouling during ultrafiltration (UF) were studied. The results showed that the chemical compositions and fouling potentials of SMPs were carbon source- and growth phase-dependent. In the exponential phase, SMPs mainly consisted of utilization-associated products (UAPs) and remaining substrates. As the microorganism progressed into the stationary and senescent phases, UAPs and biomass-associated products (BAPs) were the main components, respectively. The SMP contents generated in glucose medium were higher than those generated in acetate medium, and higher abundances of humic fluorescent components were observed in glucose-fed SMPs. Van Krevelen diagrams of the UPLC-MS results revealed that acetate-fed SMPs contained more carboxylic-rich alicyclic molecules, peptides-like, aromatic, and carbohydrates-like components than glucose-fed SMPs in the stationary and senescent phases. These components played a significant role in irreversible membrane fouling, as evidenced in UF experiments. Standard blocking and cake filtration were the main fouling mechanisms for the filtration of SMPs collected in the exponential and stationary/senescent phases, respectively. Our findings highlight linkages between SMP compositions and membrane fouling at both the compound and molecular levels and suggest that both the carbon source and growth phase strongly determine the production potential, chemical nature, and fouling behavior of SMPs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要