Neo100 Transiently Opens Up The Blood Brain Barrier Via Tight Junction Inhibition

Neuro-oncology(2020)

引用 0|浏览7
暂无评分
摘要
Abstract The blood brain barrier (BBB) prevents effective entry of nearly all therapeutics to the central nervous system (CNS), preventing effective treatment of brain-related malignancies. Intracarotid mannitol injection has been the main technique to transiently open up the BBB, with its attendant variability and complications. A more direct and better tolerated method is needed to open up the BBB. We present our discovery that intraarterial (IA) injection of NEO100, a cGMP-quality form of perillyl alcohol (POH), transiently opens up the BBB in a safe and reversible manner. We used in-vitro models of MDCK1 and patient derived brain endothelial cell (BEC) + astrocyte barriers to determine that NEO100 increased FITC-antibody diffusion across the in-vitro BBB model and decreased trans-epithelial/endothelial electrical resistance (TEER). NEO100 effects on transcellular and paracellular pathways were studied using western blot, flow cytometry, HPLC, fluorescent probes, microarray analysis, and transmission electron microscopy. In-vivo studies were performed using ultrasound-guided intracardiac administration of NEO100 in mice with subsequent intravenous delivery of non-BBB permeable therapeutic agents. We determined that NEO100 transiently disrupts the transcellular pathway by permeabilizing BEC membranes, and the paracellular pathway via delocalization of tight junction proteins. In vivo IA NEO100 administration caused an effective dose- and time-dependent BBB permeabilization, which was reversible and well tolerated by the mice. This was evidenced by the spreading of Evans blue dye, and of therapeutics with different molecular weights, ie methotrexate, anti-PD-1 antibody, and CAR-T cells in the brain. Our results demonstrate that IA NEO100 is able to open the BBB in a controlled and reversible manner, allowing it to facilitate drug delivery to the CNS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要