Three Mesoscale Eddy Detection And Tracking Methods: Assessment For The South China Sea

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY(2021)

引用 10|浏览2
暂无评分
摘要
Complex topography and the Kuroshio eddy-shedding process produce active mesoscale eddy activity in the South China Sea (SCS). Three eddy detection and tracking methods, the Okubo-Weiss (O-W), vector-geometry (V-G), and winding-angle (W-A) algorithms, have been widely applied for eddy identification. This study provides a comprehensive assessment of the O-W, V-G, and W-A methods in the SCS, including their detection, statistical analysis, and tracking capabilities. The mean successful detection rates of the O-W, V-G, and W-A methods are 51.9%, 56.8%, and 61.4%, respectively. The O-W and V-G methods preferentially detect eddies with medium radii (1/2 degrees -1 degrees), whereas the W-A method tends to detect eddies with larger radii (>1 degrees). The V-G method identifies an excessive number of weak (radius < 1/3) eddylike structures in the SCS, accounting for 48.2% of the total eddy number. The highest mean excessive detection rate of the V-G method biases the data on eddy number, probability, and propagation direction. With the lowest mean successful tracking rate (STR), the O-W method might not be suitable for tracking long-lived eddies in the SCS. The V-G method performs well with regard to the overtracking issue and has the lowest mean questionable tracking rate of 1.1%. Among the three methods, the W-A method tracks eddies most accurately, with the highest mean STR of 80.6%. Overall, the W-A method produces reasonable statistical eddy characteristics and eddy tracking results. Each method has advantages and disadvantages, and researchers should choose wisely according to their needs.
更多
查看译文
关键词
Eddies, Mesoscale processes, Ocean circulation, Trajectories, Algorithms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要