MXene-composited highly stretchable, sensitive and durable hydrogel for flexible strain sensors

CHINESE CHEMICAL LETTERS(2021)

引用 65|浏览5
暂无评分
摘要
The flourishing development in flexible electronics has provoked intensive research in flexible strain sensors to realize accurate perception acquisition under different external stimuli. However, building hydrogel-based strain sensors with high stretchability and sensitivity remains a great challenge. Herein, MXene nanosheets were composited into polyacrylamide-sodium alginate matrix to construct mechanical robust and sensitive double networked hydrogel strain sensor. The hydrophilic MXene nanosheets formed strong interactions with the polymer matrix and endowed the hydrogel with excellent tensile properties (3150%), compliant mechanical strength (2.03 kPa(-1) in Young's Module) and long-lasting stability and fatigue resistance (1000 dynamic cycles under 1,600% strain). Due to the highly oriented MXene-based three dimensional conductive networks, the hydrogel sensor achieved extremely high tensile sensitivity (18.15 in gauge factor) and compression sensitivity (0.38 kPa(-1) below 3 kPa). MXene hydrogel-based strain sensors also displayed negligible hysteresis in electromechanical performance, typical frequent-independent feature and rapid response time to external stimuli. Moreover, the sensor exhibited accurate response to different scales of human movements, providing potential application in speech recognition, expression recognition and handwriting verification. (C) 2021 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Hydrogel,MXene,Strain sensor,High stretchablity and sensitivity,Durability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要