First-ever test and characterization of the AMS standard bulk 0.35 mu m CMOS technology at sub-kelvin temperatures

Journal of Physics Conference Series(2017)

引用 7|浏览0
暂无评分
摘要
From medical imaging to particle physics passing, among others, by space applications, integrated readout electronics (ICs) in CMOS technologies are often adopted. When a high sensitivity and a low noise level are required, cooling of detectors and readout electronics is the recommended solution. To maintain a constant cooling temperature, they very often operate at nitrogen and helium-4 liquids temperatures, respectively 77 K and 4.2 K. At these temperatures, Spice parameters of MOSFET transistors may be found in the literature. However, their performances at sub-kelvin temperatures remain unknown because of a lack in scientific publications thereupon. CEA Astrophysics division's focal plane arrays-based bolometers are cooled at 0.1 K. The front-end electronics also. However, a CMOS technology was characterized for the first time at sub-kelvin temperatures. It is shown by measured n and p channel transistors' I-V that the AMS 0.35 mu m standard bulk CMOS technology, is still performing at 0.1 K. Despite some specific effects on silicon behaviour at cryogenic temperatures, performances are very satisfactory.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要