Hydroxylated Bifeo3 As Efficient Fillers In Poly(Vinylidene Fluoride) For Flexible Dielectric, Ferroelectric, Energy Storage And Mechanical Energy Harvesting Application

DALTON TRANSACTIONS(2021)

引用 30|浏览3
暂无评分
摘要
Here we report the effect of surface hydroxylation of BiFeO3 fillers on the dielectric, ferroelectric, energy storage and mechanical energy harvesting performance of poly(vinylidene fluoride). Surface hydroxylation helped to improve the interfacial interaction between the filler and PVDF matrix by introducing a strong hydrogen bonding between the -OH group of the hydroxylated BiFeO3 filler surface and the -CF2 dipole of PVDF in place of electrostatic interfacial interaction between non-hydroxylated BiFeO3 and the -CH2 dipole of PVDF. The amount of polar phase increased to around 91% for a 7 wt% hydroxylated BiFeO3 loaded PVDF film (7BFOH) by this new type of interfacial interaction. The dielectric, ferroelectric, energy storage and mechanical energy harvesting performance of the PVDF based composite films also improved by the above said technique. Upon repeated human finger tapping, the 7BFOH film delivered similar to 18 V output peak to peak open circuit ac voltage (V-OC). After rectification, the V-OC of the 7BFOH film was able to charge a 10 mu F capacitor up to similar to 3 V which was able to light up some LEDs (connected in parallel) together instantaneously, which proved the real life applicability of the composite films in low power consuming self-powered electronic devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要