Tetrazine-Mediated Bioorthogonal Removal Of 3-Isocyanopropyl Groups Enables The Controlled Release Of Nitric Oxide In Vivo

BIOMATERIALS SCIENCE(2021)

引用 5|浏览10
暂无评分
摘要
Bond cleavage bioorthogonal chemistry has been widely employed to restore or activate proteins or prodrugs. Nitric oxide (NO), as a free radical molecule, has joined the clinical arena of cancer therapy, since high levels of NO could produce a cancer cell growth inhibitory effect. However, the spatiotemporal controlled release of NO remains a great challenge, and bioorthogonal chemistry may open a new window. Herein, we described a class of O-2-3-isocyanopropyl diazeniumdiolates 3a-f as new bioorthogonal NO precursors, which can be effectively uncaged via tetrazine-mediated bond cleavage reactions to liberate NO and acrolein in living cancer cells, exhibiting potent antiproliferative activity. Furthermore, 3a and tetrazine BTZ were respectively encapsulated into two liposomes. It was found that simultaneous administrations of the two liposomes could specifically release large amounts of NO in the implanted cancer cells in zebrafish, thus generating potent tumor suppression activity in vivo. Our findings indicate that the TZ-labile NO precursors could serve to expand the NO-based smart therapeutics and the scope of bioorthogonal chemistry utility in vivo in the near future.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要