Nanoparticle-Mediated Delivery of Pitavastatin to Monocytes/Macrophages Inhibits Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Apoe-/- Mice

JOURNAL OF ATHEROSCLEROSIS AND THROMBOSIS(2022)

引用 8|浏览9
暂无评分
摘要
Aim: Abdominal aortic aneurysm (AAA) is a lethal and multifactorial disease. To prevent a rupture and dissection of enlarged AAA, prophylactic surgery and stenting are currently available. There are, however, no medical therapies preventing these complications of AAA. Statin is one of the candidates, but its efficacy on AAA formation/progression remains controversial. We have previously demonstrated that nanoparticles (NPs) incorporating pitavastatin (Pitava-NPs)-clinical trials using these nanoparticles have been already conducted- suppressed progression of atherosclerosis in apolipoprotein E-deficient (Apoe-/-) mice. Therefore, we have tested a hypothesis that monocytes/macrophages-targeting delivery of pitavastatin prevents the progression of AAA. Methods: Angiotensin II was intraperitoneally injected by osmotic mini-pumps to induce AAA formation in Apoe-/- mice. NPs consisting of poly(lactic-co-glycolic acid) were used for in vivo delivery of pitavastatin to monocytes/macrophages. Results: Intravenously administered Pitava-NPs (containing 0.012 mg/kg/week pitavastatin) inhibited AAA formation accompanied with reduction of macrophage accumulation and monocyte chemoattractant protein-1 (MCP-1) expression. Ex vivo molecular imaging revealed that Pitava-NPs not only reduced macrophage accumulation but also attenuated matrix metalloproteinase activity in the abdominal aorta, which was underpinned by attenuated elastin degradation. Conclusion: These results suggest that Pitava-NPs inhibit AAA formation associated with reduced macrophage accumulation and MCP-1 expression. This clinically feasible nanomedicine could be an innovative therapeutic strategy that prevents devastating complications of AAA.
更多
查看译文
关键词
Nanoparticle, Aneurysm, Inflammation, Statins, Monocyte
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要