Atomic-Level Differences Between Brain Parenchymal- And Cerebrovascular-Seeded A Beta Fibrils

SCIENTIFIC REPORTS(2021)

引用 9|浏览25
暂无评分
摘要
Alzheimer's disease is characterized by neuritic plaques, the main protein components of which are beta-amyloid (A beta) peptides deposited as beta-sheet-rich amyloid fibrils. Cerebral Amyloid Angiopathy (CAA) consists of cerebrovascular deposits of A beta peptides; it usually accompanies Alzheimer's disease, though it sometimes occurs in the absence of neuritic plaques, as AD also occurs without accompanying CAA. Although neuritic plaques and vascular deposits have similar protein compositions, one of the characteristic features of amyloids is polymorphism, i.e., the ability of a single pure peptide to adopt multiple conformations in fibrils, depending on fibrillization conditions. For this reason, we asked whether the A beta fibrils in neuritic plaques differed structurally from those in cerebral blood vessels. To address this question, we used seeding techniques, starting with amyloid-enriched material from either brain parenchyma or cerebral blood vessels (using meninges as the source). These amyloid-enriched preparations were then added to fresh, disaggregated solutions of A beta to make replicate fibrils, as described elsewhere. Such fibrils were then studied by solid-state NMR, fiber X-ray diffraction, and other biophysical techniques. We observed chemical shift differences between parenchymal vs. vascular-seeded replicate fibrils in select sites (in particular, Ala2, Phe4, Val12, and Gln15 side chains) in two-dimensional C-13-C-13 correlation solid-state NMR spectra, strongly indicating structural differences at these sites. X-ray diffraction studies also indicated that vascular-seeded fibrils displayed greater order than parenchyma-seeded fibrils in the "side-chain dimension" (similar to 10 angstrom reflection), though the "hydrogen-bond dimensions" (similar to 5 angstrom reflection) were alike. These results indicate that the different nucleation conditions at two sites in the brain, parenchyma and blood vessels, affect the fibril products that get formed at each site, possibly leading to distinct pathophysiological outcomes.
更多
查看译文
关键词
Molecular biophysics,Peptides,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要