Photonic Excitation Of A Micromechanical Cantilever In Electrostatic Fields

A Barsella, M A Hurier,M D Pichois,M Vomir, H Hasan,L Mager,B Donnio,J L Gallani,M V Rastei

PHYSICAL REVIEW LETTERS(2020)

引用 7|浏览11
暂无评分
摘要
y We present a specific near-field configuration where an electrostatic force gradient is found to strongly enhance the optomechanical driving of an atomic force microscope cantilever sensor. It is shown that incident photons generate a photothermal effect that couples with electrostatic fields even at tip-surface separations as large as several wavelengths, dominating the cantilever dynamics. The effect is the result of resonant phenomena where the photothermal-induced parametric driving acts conjointly (or against, depending on electric field direction) with a photovoltage generation in the cantilever. The results are achieved experimentally in an atomic force microscope operating in vacuum and explained theoretically through numerical simulations of the equation of motion of the cantilever. Intrinsic electrostatic effects arising from the electronic work-function difference of tip and surface are also highlighted. The findings are readily relevant for other optomicromechanical systems where electrostatic force gradients can be implemented.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要