Respiratory Variations In Peak Peripheral Artery Velocities And Waveforms For Rapid Assessment Of Fluid Responsiveness In Traumatic Shock Patients

MEDICAL SCIENCE MONITOR(2021)

引用 0|浏览12
暂无评分
摘要
Background: This study aimed to assess the correlation between the variability of the end-inspiratory and end-expiratory blood flow waveform and fluid responsiveness (FR) in traumatic shock patients who underwent mechanical ventilation by evaluating peripheral arterial blood flow parameters.Material/Methods: A cohort of 60 patients with traumatic shock requiring mechanical ventilation-controlled breathing received ultrasound examinations to assess the velocity of carotid artery (CA), femoral artery (FA) and brachial artery (BA). A rehydration test was performed in which of 250 ml of 0.9% saline was administered within 30 min between the first and second measurement of cardiac output by echocardiography. Then, all patients were divided into 2 groups, a responsive group (FR+) and a non-responsive group (FR-). The velocity of end-inspiratory and end-expiratory peripheral arterial blood flow of all patients was ultrasonically measured, and the variability were measured between end-inspiratory and end-expiratory.Results: The changes in the end-inspiratory and end-expiratory carotid artery blood flow velocity waveforms of the FR+ groups were significantly different from those of the FR- group (P<0.001). A statistically significant difference in Delta Vmax (CA), Delta Vmax (BA), and Delta Vmax (FA) between these 2 groups was found (all P<0.001). The ROC curve showed that Delta Vmax (CA) and Delta Vmax (BA) were more sensitive values to predict FR compared to Delta Vmax (FA). The sensitivity of Delta Vmax (CA), Delta Vmax (FA), and Delta Vmax (BA) was 70.0%, 86.7%, and 93.3%, respectively.Conclusions: The study showed that periodic velocity waveform changes in the end-inspiratory and end-expiratory peripheral arterial blood flow can be used for quick assessment of fluid responsiveness.
更多
查看译文
关键词
Blood Volume, Carotid Arteries, Shock, Traumatic, Ultrasonography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要