Global Propagation Of Transition Cost For Fixed Job Scheduling

ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE(2020)

引用 1|浏览8
暂无评分
摘要
We present a new Constraint Programming (CP) model to optimize the transition cost of Fixed Job Scheduling (FJS), which improves our previous approach based on per-resource constraints by orders of magnitude. Our new model relies on a much tighter relaxation which encompasses all resources to directly propagate on the global cost, thanks to the MinWeightAllDiff optimization constraint.We also present several strategies which exploit the optimal matching computed by the MinWeightAllDiff constraint to efficiently guide the search. The resulting CP solver, using parallel cooperation between the strategies, consistently outperforms a state-of-the-art MIP solver on real instances of an FJS application, the Gate Allocation Problem, at Paris-Charles-de-Gaulle international airport.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要