SMARS: Sleep Monitoring via Ambient Radio Signals

IEEE Transactions on Mobile Computing(2021)

引用 96|浏览100
暂无评分
摘要
We present the model, design, and implementation of SMARS, the first practical Sleep Monitoring system that exploits Ambient Radio Signals to recognize sleep stages and assess sleep quality. This will enable a future smart home that monitors daily sleep in a ubiquitous, non-invasive and contactless manner, without instrumenting the subject's body or the bed. The key enabler underlying SMARS is a statistical model that accounts for all reflecting and scattering multipaths, allowing highly accurate and instantaneous breathing estimation with best-ever performance achieved on commodity devices. On this basis, SMARS then recognizes different sleep stages, including wake, rapid eye movement (REM), and non-REM (NREM), which was previously only possible with dedicated hardware. We implement a real-time system on commercial WiFi chipsets and deploy it in 6 homes, resulting in 32 nights of data in total. Our results demonstrate that SMARS yields a median absolute error of 0.47 breaths per minute (BPM) and a 95 percent-tile error of only 2.92 BPM for breathing estimation, and detects breathing robustly even when a person is 10 meters away from the link, or behind a wall. SMARS achieves a sleep staging accuracy of 88 percent, outperforming the prevalent unobtrusive commodity solutions using bed sensor or UWB radar. The performance is also validated upon a public sleep dataset of 20 patients. By achieving promising results with merely a single commodity RF link, we believe that SMARS will set the stage for a practical in-home sleep monitoring solution.
更多
查看译文
关键词
Breathing estimation,maximal ratio combining,radio signals,signal processing,sleep monitoring,vital signs monitoring,WiFi sensing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要