A Novel N-Doped Graphene Oxide Enfolded Reduced Titania For Highly Stable And Selective Gas-Phase Photocatalytic Co2 Reduction Into Ch4: An In-Depth Study On The Interfacial Charge Transfer Mechanism

CHEMICAL ENGINEERING JOURNAL(2021)

引用 44|浏览3
暂无评分
摘要
A desire for renewable alternatives to fossil fuels can be achieved by utilizing CO2, H2O, and solar energy to generate solar fuels. A novel N-doped graphene oxide enfolded reduced titania (NGO-RT) composite was demonstrated for photocatalytic CO2 reduction into CH4. Later, a small amount of Pt NPs was deposited on NGORT that increases the catalytic performance towards CH4 formation. The optimized Pt-1.0%-NGO-RT catalyst displayed a selective visible-light CO2 reduction into CH4 using a flow reactor system with approximate to 12 and approximate to 2 times higher activity than pristine RT and NGO-RT, respectively. The catalyst demonstrated long-term stability over 35 h. The photo-induced CO2 reduction mechanism was first validated through the electron transfer process, where charge trapping by Ti3+ states near the conduction band of RT plays a vital role in the selective CH(4 )evolution. These trapped electrons transfer from RT to the closely connected interface of N-doped graphene oxide and Pt NPs to restrict the recombination of electron/hole pair. The improved catalytic performance can be attributed to RT's downward band bending at the NGO-RT interface, where electron transfer from RT to NGO decreases the charge recombination.
更多
查看译文
关键词
Reduced titania, N-doped GO, Photocatalysis, CO2 reduction, Flow-reactor system
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要