Identifying meteorological influences on marine low cloud mesoscale morphology using deep learning classifications

Atmospheric Chemistry and Physics(2020)

引用 0|浏览6
暂无评分
摘要
Abstract. Marine low cloud mesoscale morphology in the southeastern Pacific Ocean is analyzed using a large dataset of machine-learning generated classifications spanning three years. Meteorological variables and cloud properties are composited by mesoscale cloud type, showing distinct meteorological regimes of marine low cloud organization from the tropics to the midlatitudes. The presentation of mesoscale cellular convection, with respect to geographic distribution, boundary layer structure, and large-scale environmental conditions, agrees with prior knowledge. Two tropical and subtropical cumuliform boundary layer regimes, suppressed cumulus and clustered cumulus, are studied in detail. The patterns in precipitation, circulation, column water vapor, and cloudiness are consistent with the representation of marine shallow mesoscale convective self-aggregation by large eddy simulations of the boundary layer. Although they occur under similar large-scale conditions, the suppressed and clustered low cloud types are found to be well-separated by variables associated with low-level mesoscale circulation, with surface wind divergence being the clearest discriminator between them, whether reanalysis or satellite observations are used. Clustered regimes are associated with surface convergence and suppressed regimes are associated with surface divergence.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要