A study of the micro/nano surface structure of Al film to enhance the triboelectric performance based on direct writing with a Q-switched Pulsed Laser

Hai Phan, P.N. Hoa, H.A. Tam,P.D. Thang

Journal of Science: Advanced Materials and Devices(2020)

引用 0|浏览4
暂无评分
摘要
Abstract The micro/nano surface structure of triboelectric layers possesses a critical impact on the performance of triboelectric nanogenerators (TENG). Here, we present a solution for the enhancement of the triboelectric performance by utilizing a Q-switched Pulsed Laser (QSL) that directly writes on an Aluminum surface in the net configuration. The crinkled nanostructure of the surface of Polytetrafluoroethylene (PTFE) is fabricated by the Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE) technology. By adjusting the QSL source parameters, many kinds of Al/PTFE concepts of synthetic devices with built-in contact-separation could systematically be characterized. The optimal triboelectric performance was confirmed by the increase of the open-circuit voltage and the short-circuit current from 75 V to 148 V and from 6.8 μA to 9.6 μA, respectively, and by a nearly 2.5 times higher power than that of a pristine Al-based device. The real-time practical applicability of the SA-TENG concept was confirmed by the lighting up of 92 LEDs connected in series and by the charging up of a 10 μF capacitor to 1.68 V in 30 s. This work provides an effective direct writing process with a Q-switched Pulsed Laser for the fabrication of micro/nano-structures on Aluminum and for the enhancement of the output performance of TENG, which would greatly promote the TENG branding in mass manufacturing and micro-energy utilizations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要