Ethanol Dehydrogenation: A Reaction Path Study by Means of Temporal Analysis of Products

CATALYSTS(2020)

引用 9|浏览6
暂无评分
摘要
Conventional fossil fuels such as gasoline or diesel should be substituted in the future by environmentally-friendly alternatives in order to reduce emissions in the transport sector and thus mitigate global warming. In this regard, iso-butanol is very promising as its chemical and physical properties are very similar to those of gasoline. Therefore, ongoing research deals with the development of catalytically-supported synthesis routes to iso-butanol, starting from renewably-generated methanol. This research has already revealed that the dehydrogenation of ethanol plays an important role in the reaction sequence from methanol to iso-butanol. To improve the fundamental understanding of the ethanol dehydrogenation step, the Temporal Analysis of Products (TAP) methodology was applied to illuminate that the catalysts used, Pt/C, Ir/C and Cu/C, are very active in ethanol adsorption. H-2 and acetaldehyde are formed on the catalyst surfaces, with the latter quickly decomposing into CO and CH4 under the given reaction conditions. Based on the TAP results, this paper proposes a reaction scheme for ethanol dehydrogenation and acetaldehyde decomposition on the respective catalysts. The samples are characterized by means of N-2 sorption and Scanning Transmission Electron Microscopy (STEM).
更多
查看译文
关键词
renewable fuels,ethanol dehydrogenation,acetaldehyde decomposition,C-supported precious metal catalysts,Temporal Analysis of Products,Scanning Transmission Electron Microscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要