Prussian Blue modified Metal Organic Frameworks for imaging guided synergetic tumor therapy with hypoxia modulation

JOURNAL OF ALLOYS AND COMPOUNDS(2021)

引用 21|浏览20
暂无评分
摘要
In this study, a hybrid material UIO-66-NH2/PB were synthesized through the modification of Prussian Blue on the surface of Metal Organic Frameworks for synergetic tumor therapy with hypoxia modulation. It was found that UIO-66-NH2/PB has good photo-thermal performance and photo-thermal stability, suitable for photo-thermal treatment. Dissolved oxygen analysis showed that UIO-66-NH2/PB can catalyze H2O2 into O-2. It was proved that this process is accompanied by the generation of center dot OH. Furthermore, with the irradiation of 808 nm for 5min, the TMB solution becomes darker blue, proving that more free radicals are produced. The produced O-2 can be used to modulate the hypoxia of tumor to improve the anti-cancer efficiency, and the generated center dot OH can kill cancer cells to achieve chemodynamic therapy. Doxorubicin (DOX) was selected as a model drug and the DOX loading of UIO-66-NH2/PB was 67%. Drug release experiments showed that DOX was not nearly released in pH 7.4, while 78% DOX was released in pH5.8 after 40 h, demonstrating the excellent pH-responsive release. In addition, with the irradiation of 808 nm for 5min, 87% DOX was released in pH 5.8, indicating photothermal effect could help achieve better release effect. The different cytotoxicity to L-02 cells and HeLa cells of UIO-66-NH2/PB shows UIO-66-NH2/PB is only harmful to cancer cells, indicating that Fenton-like reaction only occurred in tumor to generate center dot OH. In vivo experiment showed synergetic therapy can achieve satisfactory treatment efficiency. Therefore, UIO-66-NH2/PB is expected to combine multiple treatments to improve anti-cancer effect. (C) 2020 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Nanostructures,Surfaces and interfaces,Nanofabrications,pH-responsive,PTT,CDT
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要