Study Of Droplet Diffusion In Hydrothermal-Assisted Transient Jet Fusion Of Ceramics

JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME(2021)

引用 2|浏览5
暂无评分
摘要
Hydrothermal-assisted transient jet fusion (HTJF) is a powder-based additive manufacturing (AM) method of ceramics, which utilizes a water-mediated hydrothermal mechanism to fuse particles together, eliminating the use of organic binders in forming green bodies and thereby contributing to high green-density parts (>90%) advantageous for fabricating functional materials with high performance. In the HTJF process, a transient solution such as water is selectively deposited into a powder bed in a layer-by-layer fashion followed by a hydrothermal fusion process. Upon the ejection and deposition of a droplet of the transient solution on the surface of the powder bed, the diffusion behavior of the liquid significantly influences the particle fusion and the fabrication accuracy of the HTJF process. Precise control of the liquid diffusion in the powder bed is critical for the fabrication of ceramic structures with both high density and accuracy. In this paper, the dependence of transient solution diffusion on different process parameters (i.e., powder packing density, droplet size, pressure, etc.) in the HTJF process were studied. Both numerical modeling and experimental methods were used to quantify the relationships between processing parameters and diffusion profiles of transient solution droplets (e.g., diffusion width/depth). Optimum processing conditions were identified to mitigate the undesired diffusion of transient solution droplets in the powder bed.
更多
查看译文
关键词
hydrothermal-assisted transient jet fusion, green density, diffusion profile, additive manufacturing, transient solution, modeling and simulation, powder processing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要