Dual role of G-quadruplex in translocation renal cell carcinoma: Exploring plausible Cancer therapeutic innovation.

BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS(2020)

引用 7|浏览6
暂无评分
摘要
Background: Renal Cell Carcinoma (RCC) is the ninth leading cause of death among kidney cancer. Xp11.2 translocation harboring TFE3 fusion proteins, act as an oncogene in translocation cancers that constitute the hallmark of translocation renal cell carcinoma (tRCC). G-quadruplex (G4), an alternative nucleic acid structure is an emerging and promising factor in cancer. The presence of G4 within the genome plays a pioneering role in cancer as it contributes to genomic aberration as well as inhibition in cell proliferation. Scope of review: Here we discuss the link between G4 and tRCC. We compile the available information of G-quadruplex & propose their dual role in tRCC, suggesting both stabilization and destabilization of G-quadruplex could be considered targets for tRCC. Major conclusions: Our in Silico analysis of TFE3 and their three fusions partner's PRCC, SFPQ, and ASPSCR1 discloses a few putative G4 forming sequences (PQS) in their corresponding fusion gene or fusion transcript. Stabilization of G4 structure within fusion gene/transcript can be of great use towards potential therapeutics targeting fusion protein derived oncogenesis, as G4 is a serious menace for DNA polymerization, transcription & translation. G-quadruplex at intron-2 of the TFE3 has been reported to mediate its translocation also. Both stabilization and destabilization of the G4 structure would be a promising approach in the suppression of cancerous cell proliferation. General significance: Pioneering studies discovered the relevance of G4 in cancer therapy and explore our approaches towards therapeutic innovation against oncogenic fusion protein and tRCC. Selectively targeting G4 in oncogenic fusion transcript will emerge as potential druggable structures.
更多
查看译文
关键词
Translocation renal cell carcinoma,Xp11.2 translocation,TFE3 fusion protein,G-quadruplex
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要