Magnetic and microscopic characterization of anthropogenically produced magnetic particles: a proxy for environmental pollution

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY(2020)

引用 13|浏览0
暂无评分
摘要
The employment of magnetic characterization of anthropogenically produced magnetic particles (APMs) as a proxy for discriminating the pollution sources around Kolaghat thermal power station, West Bengal, India, is complemented by microscopic analysis and elemental composition in the present study. The magnetic measurements such as magnetic susceptibility ( χ lf ), isothermal remanent magnetization, coercivity spectra, hysteresis measurements, and thermomagnetic curves ( κ − T ) were implemented to evaluate the magnetic gestures of APMs, which are accompanied by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) analysis to explore the morphological characteristics. The studied samples illustrated a wide variety of χ lf values, which were determined by the concentration of APMs. The magnetic measurements revealed that the studied samples comprised pseudo-single-domain magnetite with minor titanomagnetite (s), maghemite, and hematite/goethite. SEM analysis portrayed varied morphological properties of APMs like spherules (viz. smooth, hollow, and meld-like spherules), which are usually coupled with fossil fuel combustion, and irregular-shaped APMs, which are generated from traffic emission and natural background input. Elemental composition as interpreted by EDS analysis displays varied composition of APMs, which indicates the influence of industrial and traffic emissions in the study area. This study exhibited that magnetic and microscopic characterization of APMs can be used as an appropriate tracer for soil and dust pollution, which provides significant perspectives for further detailed chemical mapping.
更多
查看译文
关键词
Environmental magnetism, Thermal power plants, Magnetic susceptibility, Urban pollution, Morphological analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要