Data-Driven Prediction Of Unconventional Shale-Reservoir Dynamics

SPE JOURNAL(2020)

引用 11|浏览0
暂无评分
摘要
The present work introduces extended dynamic mode decomposition (EDMD) as a suitable data-driven framework for learning the reservoir dynamics entailed by flow/fracture interactions in unconventional shales. The proposed EDMD approach builds on the approximation of infinite-dimensional linear operators combined with the power of deep learning autoencoder networks to extract salient transient features from pressure/stress fields and bulks of production data. The data-driven model is demonstrated on three illustrative examples involving single- and two-phase coupled flow/geomechanics simulations and a real production data set from the Vaca Muerta unconventional shale formation in Argentina. We demonstrated that we could attain a high level of predictability from unseen field-state variables and well-production data given relatively moderate input requirements. As the main conclusion of this work, EDMD stands as a promising data-driven choice for efficiently reconstructing flow/fracture dynamics that are either partially or entirely unknown, or that are too complex to formulate using known simulation tools on unconventional plays.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要