Role Of Long-Range Exact Exchange In Polaron Charge Transition Levels: The Case Of Mgo

PHYSICAL REVIEW MATERIALS(2020)

引用 7|浏览18
暂无评分
摘要
Predicting the degree of localization and calculating the trapping energies of polarons in insulators by density functional theory (DFT) is challenging. Hybrid functionals are often reparametrized to obtain accurate results and the a priori selection of these parameters is still an open question. Here we test the accuracy of several range-separated hybrid functionals, all reparametrized to produce an accurate band gap, by calculating the charge transition levels (CTLs) of experimentally well-studied hole polaron defect centers in MgO. We show that the functional with screened long-range exact exchange is moderately but consistently more accurate than functionals which do not include long-range exact exchange. We provide evidence that the source of the improved accuracy is the eigenvalue associated with the valence band maximum of the bulk material. We discuss the extent to which this accuracy relates to Koopmans' compliance of the defect energy level.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要