Recent Progress On Nanostructured Carbon-Based Counter/Back Electrodes For High-Performance Dye-Sensitized And Perovskite Solar Cells

NANOSCALE(2020)

引用 44|浏览14
暂无评分
摘要
Dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs) favor minimal environmental impact and low processing costs, factors that have prompted intensive research and development. In both cases, rare, expensive, and less stable metals (Pt and Au) are used as counter/back electrodes; this design increases the overall fabrication cost of commercial DSSC and PSC devices. Therefore, significant attempts have been made to identify possible substitutes. Carbon-based materials seem to be a favorable candidate for DSSCs and PSCs due to their excellent catalytic ability, easy scalability, low cost, and long-term stability. However, different carbon materials, including carbon black, graphene, and carbon nanotubes, among others, have distinct properties, which have a significant role in device efficiency. Herein, we summarize the recent advancement of carbon-based materials and review their synthetic approaches, structure-function relationship, surface modification, heteroatoms/metal/metal oxide incorporation, fabrication process of counter/back electrodes, and their effects on photovoltaic efficiency, based on previous studies. Finally, we highlight the advantages, disadvantages, and design criteria of carbon materials and fabrication challenges that inspire researchers to find low cost, efficient and stable counter/back electrodes for DSSCs and PSCs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要