An automated calibration framework and open source tools for 3D lake hydrodynamic models

Environmental Modelling & Software(2020)

引用 17|浏览22
暂无评分
摘要
Understanding lake dynamics is crucial to provide scientifically credible information for ecosystem management. In this context, three-dimensional hydrodynamic models are a key information source to assess critical but often subtle changes in lake dynamics occurring at all spatio-temporal scales. However, those models require time-consuming calibrations, often carried out by trial-and-error. Through a new coupling of open source software, we present here a flexible and computationally inexpensive automated calibration framework. The method, tailored to the calibration data available to the user, aims at (i) reducing the time spent on calibration, and (ii) making three-dimensional lake modelling accessible to a broader range of users. It is demonstrated for two different lakes (Lake Geneva and Greifensee) with an extensive multi-variable observational dataset. Models mean absolute errors are reduced by up to ~50% over the baseline. Guidelines on heat and momentum transfer parameters are given with their dependence on the observational setup.
更多
查看译文
关键词
Auto-calibration,OpenDA,Delft3D-FLOW,Parameter estimation,Observational uncertainty,Model performance evaluation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要