Effect Of Kaolin Geopolymer Ceramic Addition On The Properties Of Sn-3.0ag-0.5cu Solder Joint

MATERIALS TODAY COMMUNICATIONS(2020)

引用 14|浏览11
暂无评分
摘要
This paper investigates the effects of different weight percentages (0, 0.5, 1.0, 1.5 and 2.0 wt.%) of kaolin geopolymer ceramic (KGC) on the microstructure formation, thermal properties, spreadability and joint strength in Sn-3.0Ag-0.5Cu (SAC305) lead-free solder alloys in order to develop a new composite solder system. Advanced characterization techniques such as Electron backscatter diffraction (EBSD) and synchrotron micro-XRF were used to study the behaviors of the pure SAC305 and KGC reinforced SAC305 composite solders. Experimental results shows that the addition of KGC refines the beta-Sn area and increases the eutectic area with fine intermetallics formation. In addition, the thickness of the IMC layer is reduced with a reduction in undercooling value for the KGC reinforced SAC305 composite solder. The spreadability of the KGC reinforced SAC305 composite solder is significantly increased in the spreadable area with a higher strength of solder joint. Significantly, the results obtained prove that 1.0 wt.% KGC addition gives better performance in terms of microstructure formation, thermal properties, spreadability and joint strength. Synchrotron micro-XRF interestingly indicated that some Al and Si, which are the major elements in geopolymer systems, migrate into the solder area.
更多
查看译文
关键词
Geopolymer ceramics, Solder material, Soldering, Intermetallics, Microstructure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要