The Aguas Zarcas (CM2) meteorite: New insights into early solar system organic chemistry

METEORITICS & PLANETARY SCIENCE(2020)

引用 8|浏览5
暂无评分
摘要
To date, the CM2 class of carbonaceous chondrites has provided the most detailed view of organic synthesis in the early solar system. Organic-rich chondrites actually observed falling to Earth ("Falls"), for example, the Murchison meteorite in 1969, are even more rare. The April 23, 2019 fall of the Aguas Zarcas meteorite is therefore the most significant CM2 fall since Murchison. Samples collected immediately following the fall provide the rare opportunity to analyze its bulk mineralogy and organic inventory relatively free of terrestrial contamination. According to the Meteoritical Bulletin, Aguas Zarcas ("AZ" or "Zarcas") is dominated by serpentine, similar to other CM2 chondrites. Likewise, our initial analyses of AZ were meant to give a broad view of its soluble organic inventory relative to other carbonaceous chondrites. We observe that while it is rich in hydrocarbons, carboxylic acids, dicarboxylic acids, sugar alcohols, and sugar acids, some of these classes may be of lesser abundance than in the more well known carbonaceous chondrites such as Murchison. Compared generally with other CM2 meteorites, the most significant finding is the absence, or relatively low levels, of three otherwise common constituents: ammonia, amino, acids, and amines. Overall, this meteorite adds to the building database of prebiotic compounds available to the ancient Earth.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要