Effects of Cold-Work Degree on Stress Corrosion Cracking Behavior of Alloy 600 in Simulated Boiling Water Reactor (BWR) Water Environments

CORROSION(2020)

引用 1|浏览6
暂无评分
摘要
The growth behavior of stress corrosion cracking (SCC) of Alloy 600 with different cold-work levels was investigated in simulated boiling water reactors water environments. In addition, a correlation of cold-work levels, grain boundary characteristic, and the SCC growth behavior of Alloy 600 were studied. The results show that grains with high residual strain caused by cold work provide transgranular crack growth paths. The SCC growth rates of the specimens also increase with an increase in the degree of cold work and decrease remarkably after switching to the hydrogen water chemistry environment. Grain boundary character proves to be a factor more important than the localized strain concentration at the grain boundary in terms of its role in the intergranular crack growth rate of the Alloy 600 with a cold-work degree from 20% to 30%.
更多
查看译文
关键词
hydrogen water chemistry,Ni-based alloy,stress corrosion cracking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要