Enhancing the activity of platinum-based drugs by improved inhibitors of ERCC1–XPF-mediated DNA repair

CANCER CHEMOTHERAPY AND PHARMACOLOGY(2021)

引用 7|浏览45
暂无评分
摘要
Purpose The ERCC1–XPF 5′–3′ DNA endonuclease complex is involved in the nucleotide excision repair pathway and in the DNA inter-strand crosslink repair pathway, two key mechanisms modulating the activity of chemotherapeutic alkylating agents in cancer cells. Inhibitors of the interaction between ERCC1 and XPF can be used to sensitize cancer cells to such drugs. Methods We tested recently synthesized new generation inhibitors of this interaction and evaluated their capacity to sensitize cancer cells to the genotoxic activity of agents in synergy studies, as well as their capacity to inhibit the protein–protein interaction in cancer cells using proximity ligation assay. Results Compound B9 showed the best activity being synergistic with cisplatin and mitomycin C in both colon and lung cancer cells. Also, B9 abolished the interaction between ERCC1 and XPF in cancer cells as shown by proximity ligation assay. Results of different compounds correlated with values from our previously obtained in silico predictions. Conclusion Our results confirm the feasibility of the approach of targeting the protein–protein interaction between ERCC1 and XPF to sensitize cancer cells to alkylating agents, thanks to the improved binding affinity of the newly synthesized compounds.
更多
查看译文
关键词
DNA repair, Protein&#8211, protein interaction, Chemical synthesis, Cancer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要