Deep Learning Image Reconstruction Method for Limited-Angle Ultrasound Tomography in Prostate Cancer

Proceedings of SPIE(2019)

引用 8|浏览5
暂无评分
摘要
Problem: The gold standard for prostate cancer diagnosis is B-mode transrectal ultrasound-guided systematic core needle biopsy. However, cancer is indistinguishable under ultrasound and thus additional costly imaging methods are necessary to perform targeted biopsies. Speed of sound is a potential biomarker for prostate cancer and has the potential to be measured using ultrasound tomography. Given the physical constraints of the prostate's anatomy, this work explores a simulation study using deep learning for limited-angle ultrasound tomography to reconstruct speed of sound. Methods: A deep learning-based image reconstruction framework is used to address the limited-angle ultrasound tomography problem. The training data is generated using the k-wave acoustic simulation package. The general network structure is composed of a series of dense fully-connected layers followed by an encoder and a decoder network. The basic idea behind this neural network is to encode a time of flight map into a lower dimension representation that can then be decoded into a speed of sound image. Results and Conclusions: We show that limited-angle UST is feasible in simulation using an auto-encoder-like DL framework. There was a mean absolute error of 7.5 +/- 8.1 m/s with a maximum absolute error of 139.3 m/s. Future validation on experimental data will further assess their ability in improving limited-angle ultrasound tomography.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要