The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests

Wiens Roger C.,Maurice Sylvestre, Robinson Scott H., Nelson Anthony E., Cais Philippe,Bernardi Pernelle, Newell Raymond T.,Clegg Sam, Sharma Shiv K., Storms Steven,Deming Jonathan,Beckman Darrel, Ollila Ann M.,Gasnault Olivier,Anderson Ryan B., André Yves, Michael Angel S.,Arana Gorka, Auden Elizabeth,Beck Pierre, Becker Joseph,Benzerara Karim, Bernard Sylvain,Beyssac Olivier, Borges Louis,Bousquet Bruno,Boyd Kerry,Caffrey Michael, Carlson Jeffrey,Castro Kepa, Celis Jorden, Université de Toulouse, UPS, CNRS, Clark Kevin,Cloutis Edward, Cordoba Elizabeth C.,Cousin Agnes,Dale Magdalena,Deflores Lauren,Delapp Dorothea, Deleuze Muriel, Dirmyer Matthew,Donny Christophe,Dromart Gilles, George Duran M.,Egan Miles,Ervin Joan,Fabre Cecile,Fau Amaury,Fischer Woodward,Forni Olivier,Fouchet Thierry, Fresquez Reuben,Frydenvang Jens, Gasway Denine, Gontijo Ivair,Grotzinger John,Jacob Xavier,Jacquinod Sophie, Johnson Jeffrey R., Klisiewicz Roberta A., Lake James,Lanza Nina, Laserna Javier,Lasue Jeremie, Le Mouélic Stéphane,Legett Carey,Leveille Richard,Lewin Eric,Lopez-Reyes Guillermo,Lorenz Ralph,Lorigny Eric, Love Steven P., Lucero Briana,Madariaga Juan Manuel,Madsen Morten,Madsen Soren,Mangold Nicolas, Manrique Jose Antonio, Martinez J. P.,Martinez-Frias Jesus, McCabe Kevin P., McConnochie Timothy H., McGlown Justin M., McLennan Scott M.,Melikechi Noureddine, Meslin Pierre-Yves, Michel John M., Mimoun David,Misra Anupam,Montagnac Gilles,Montmessin Franck,Mousset Valerie, Murdoch Naomi,Newsom Horton, Ott Logan A., Ousnamer Zachary R.,Pares Laurent,Parot Yann, Pawluczyk Rafal, Glen Peterson C., Pilleri Paolo, Pinet Patrick, Pont Gabriel, Poulet Francois, Provost Cheryl, Quertier Benjamin, Quinn Heather, Rapin William, Reess Jean-Michel, Regan Amy H., Reyes-Newell Adriana L., Romano Philip J., Royer Clement, Rull Fernando, Sandoval Benigno, Sarrao Joseph H., Sautter Violaine, Schoppers Marcel J., Schröder Susanne, Seitz Daniel, Shepherd Terra, Sobron Pablo, Dubois Bruno, Sridhar Vishnu, Toplis Michael J., Torre-Fdez Imanol, Trettel Ian A., Underwood Mark, Valdez Andres, Valdez Jacob, Venhaus Dawn, Willis Peter

Space Science Reviews(2020)

引用 0|浏览2
暂无评分
摘要
The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam’s body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245–340 and 385–465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535–853 nm ( $105\text{--}7070~\text{cm}^{-1}$ Raman shift relative to the 532 nm green laser beam) with $12~\text{cm}^{-1}$ full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well.
更多
查看译文
关键词
Perseverance rover,LIBS,Raman spectroscopy,Infrared spectroscopy,Microphone on Mars,SuperCam,Jezero crater,Mars
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要