High Salt Diet Contributes To Hypertension By Weakening The Medullary Tricarboxylic Acid Cycle And Antioxidant System In Dahl Salt-Sensitive Rats

BIOCHIMIE(2021)

引用 11|浏览1
暂无评分
摘要
High salt diet (HSD, 8% NaCl) contributes to salt-sensitive hypertension, this study aimed to determine the effect of HSD on salt-sensitive hypertension by combining proteomic with metabolomics methods. Salt-sensitive rats were fed on HSD and normal salt diet (NSD, 0.4% NaCl) for two weeks before further analysis. Proteomic analysis showed the differential expression proteins (DEPs) were primarily mapped in the tricarboxylic acid (TCA)-cycle, glycolysis/gluconeogenesis, and other pathways associated with multiple amino acids. HSD decreased the medullary activities and protein expression level of two key enzymes of TCA-cycle, MDH and NADP thorn -IDH. Metabolomics showed three serous TCA-cycle-associated compounds, including decreased malic acid, decreased citric acid, and increased fumaric acid were differentially detected, which resulted in a decrease in NO content and an increase in H2O2 content in serum. The content of GSH, GSH/GSSG ratio, and synthesis substrates of GSH-cysteine and glycine, were significantly decreased by HSD, thus attenuated the antioxidant system in the renal medulla. HSD enhanced the medullary pentose phosphate pathway, which finally increased the concentration of NADPH and NADP thorn , NADPH/NADP thorn , and the activity of NADPH oxidase in the renal medulla. Additionally, HSD enhanced the glycolysis pathway in the renal medulla. In summary, HSD significantly weakened the TCA cycle, and attenuated the antioxidant system in the renal medulla, which finally contributed to salt sensitive hypertension. (C) 2020 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.
更多
查看译文
关键词
High salt diet, Tricarboxylic acid, Renal medulla, Proteomics, Salt-sensitive hypertension
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要