Modeling, microstructure, and mechanical properties of dissimilar 2017A and 5083 aluminum alloys friction stir welds

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE(2019)

引用 13|浏览0
暂无评分
摘要
Dissimilar aluminum alloy plates of 2017A-T451 and 5083-H111 were friction stir welded in a butt joint configuration along the longitudinal direction. Welding trials demonstrated that placing 5083 on the advancing side enhanced material flow and consequently formed a larger weld nugget. Numerical simulation supported this observation through analysis of volumetric flow rates through reference planes surrounding the stir zone. The analysis also suggests that the weld configuration that results in a decreasing temperature-dependent flow stress in the weldment from the leading edge of the tool to the trailing edge will maximize material flow in dissimilar friction stir welding welds. The decreasing flow stress promotes material flow along the retreating side of the tool as flow conditions necessarily become easier from the front to the back. Regardless of its position during welding, however, 2017A alloy dominated the nugget region. In either weld configuration, alternating bands of 2017A and 5083 with similar grain sizes (approximately 10 mu m) comprised the weld microstructure. Within the nugget, numerous second-phase particles as well as dislocations occurring as single dislocations or in the form of dislocation tangles or walls (low angle grain boundaries) were present. The relatively high dislocation density observed in both alloys suggested that recrystallization was incomplete. Hardness mapping revealed an asymmetric variation of hardness across the weld centerline that strictly corresponded to the distribution of particular alloys within the nugget. During tensile testing, the AS 5083-RS 2017A configuration failed under ductile shear rupture occurring in the base 5083 material far from the weld. For the opposite configuration, the tensile samples ruptured perpendicular to the load axis exactly on the border between the nugget and the thermomechanically affected zone on the 2017A alloy side.
更多
查看译文
关键词
Friction stir welding,dissimilar aluminum alloys,simulation,properties,microstructure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要