Closed-form theoretical model of the secondary drop size in partial coalescence-Capturing pertinent timescales and viscous forces

PHYSICS OF FLUIDS(2020)

引用 4|浏览1
暂无评分
摘要
One of the most important outcomes of partial drop coalescence is the ratio of the secondary drop radius to the primary drop radius, known as the drop ratio, r(i). This ratio is thought to be approximately constant and independent of physical parameters of the fluids involved. However, this study reveals that ambient fluid viscosity can alter the size of the secondary drop and the drop ratio consequently. Using scaling analysis, we derive a model that predicts the behavior of the drop ratio as a function of the Ohnesorge number, a dimensionless ratio of viscous to inertial forces. In addition, we present our experimental results of coalescing drops on a planar interface under the influence of surface tension gradients. A high-speed digital camera is used to observe the evolution of drops as they coalesce with a bulk liquid. We show that this process is influenced by the surface tension gradient between the drop and the bulk liquid. The ratio of the secondary drop to the primary drop in partial coalescence is smaller than the reported values for coalescence without a surface tension gradient. The analytical model derived through this study is based on a new modified Ohnesorge number that includes surface tension gradients. Our analytical model is compared against other models and the results illustrate good agreement with our experimental findings and experimental data in the literature.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要