Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods.

PHYSICAL REVIEW E(2020)

引用 26|浏览2
暂无评分
摘要
The present work proposes a general methodology to study stability and isotropy properties of lattice Boltzmann (LB) schemes. As a first investigation, such a methodology is applied to better understand these properties in the context of regularized approaches. To this extent, linear stability analyses of two-dimensional models are proposed: the standard Bhatnagar-Gross-Krook collision model, the original precollision regularization, and the recursive regularized model, where off-equilibrium distributions are partially computed thanks to a recursive formula. A systematic identification of the physical content carried by each LB mode is done by analyzing the eigenvectors of the linear systems. Stability results are then numerically confirmed by performing simulations of shear and acoustic waves. This work allows drawing fair conclusions on the stability properties of each model. In particular, among the aforementioned models, recursive regularization turns out to be the most stable one for the D2Q9 lattice, especially in the zero-viscosity limit. Two major properties shared by every regularized model are highlighted: (1) a mode filtering property and (2) an incorrect, and broadly anisotropic, dissipation rate of the modes carrying physical waves in under-resolved conditions. The first property is the main source of increased stability, especially for the recursive regularization. It is a direct consequence of the reconstruction of off-equilibrium populations before each collision process, decreasing the rank of the system of discrete equations. The second property seems to be related to numerical errors directly induced by the equilibration of high-order moments. In such a case, this property is likely to occur with any collision model that follows such a stabilization methodology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要