Ammonia Storage In Hydrogen Bond-Rich Microporous Polymers

ACS APPLIED MATERIALS & INTERFACES(2020)

引用 8|浏览28
暂无评分
摘要
The fascinating structural flexibility of porous polymers is highly attractive because it can result in optimized materials with specific host-guest interactions. Nevertheless, the fundamental mechanisms responsible for controlling the weak interactions of these hydrogen bond-rich networks.essential for developing smart task-specific materials used in recognition, capture, and sequestration processes.remain unexplored. Herein, by systematically comparing performance changes between poly(amic acid) (PAA)- and polycyclic imide (PI)-based porous polymers before and after NH3 adsorption, the role of hydrogen bonds in conformational lability and responsiveness toward guest molecules is highlighted. By combining thermal gravimetric analysis with neutron spectroscopy supported by DFT calculations, we demonstrate that PAA's chemical and physical stability is enhanced by the presence of stronger host-guest interactions. This observation also emphasizes the idea that efficient adsorption relies on having a high number of sites, upon which gas molecules can adsorb with greater affinity via strong hydrogen bonding interactions.
更多
查看译文
关键词
hydrogen interactions, task-specific materials, thermal analysis, neutron spectroscopy, DFT calculations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要