Suppressing Condensation Frosting Using An Out-Of-Plane Dry Zone

LANGMUIR(2020)

引用 7|浏览4
暂无评分
摘要
The vapor pressure above ice is lower than that above supercooled water at the same temperature. This inherent hygroscopic quality of ice has recently been exploited to suppress frost growth by patterning microscopic ice stripes along a surface. These vapor-attracting ice stripes prevented condensation frosting from occurring in the intermediate regions; however, the required presence of the sacrificial ice stripes made it impossible to achieve the ideal case of a completely dry surface. Here, we decouple the sacrificial ice from the antifrosting surface by holding an uncoated aluminum surface in parallel with a prefrosted surface. By replacing the overlapping in-plane dry zones with a uniform out-of-plane dry zone, we show that even an uncoated aluminum surface can stay almost completely dry in chilled and supersaturated conditions. Using a blend of experiments and numerical simulations, we show that the critical separation required to keep the surface dry is a function of the ambient supersaturation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要