Three-dimensional biplane spectroscopic single-molecule localization microscopy

OPTICA(2019)

引用 22|浏览4
暂无评分
摘要
Spectroscopic single-molecule localization microscopy (sSMLM) captures the full emission spectra of individual molecules while simultaneously localizing their spatial locations at a precision greatly exceeding the optical diffraction limit. To achieve this, sSMLM uses a dispersive optical component to separate the emitted photons into dedicated spatial and spectral imaging channels for simultaneous acquisition. While adding a cylindrical lens in the spatial imaging channel enabled three-dimensional (3D) imaging in sSMLM, the inherent astigmatism leads to technical hurdles in spectral calibration and nonuniform lateral resolution at different depths. We found that implementing the biplane method based on the already established spatial and spectral imaging channels offers a much more attractive solution for 3D sSMLM. It allows for more efficient use of the limited photon budget and provides homogeneous lateral resolution compared with the astigmatism-based method using a cylindrical lens. Here we report 3D biplane sSMLM and demonstrate its multi-color 3D imaging capability by imaging microtubules and mitochondria in fixed COS-7 cells immunostained with Alexa Fluor 647 and CF 660C dyes, respectively. We showed a lateral localization precision of 20 nm at an average photon count of 550, a spectral precision of 4 nm at an average photon count of 1250, and an axial localization resolution of 50 nm. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要