First-Principles Assessment of the Structure and Stability of 15 Intrinsic Point Defects in Zinc-Blende Indium Arsenide

CRYSTALS(2019)

引用 5|浏览4
暂无评分
摘要
Point defects are inevitable, at least due to thermodynamics, and essential for engineering semiconductors. Herein, we investigate the formation and electronic structures of fifteen different kinds of intrinsic point defects of zinc blende indium arsenide (zb-InAs) using first-principles calculations. For As-rich environment, substitutional point defects are the primary intrinsic point defects in zb-InAs until the n-type doping region with Fermi level above 0.32 eV is reached, where the dominant intrinsic point defects are changed to In vacancies. For In-rich environment, In tetrahedral interstitial has the lowest formation energy till n-type doped region with Fermi level 0.24 eV where substitutional point defects InAs take over. The dumbbell interstitials prefer < 110 > configurations. For tetrahedral interstitials, In atoms prefer 4-As tetrahedral site for both As-rich and In-rich environments until the Fermi level goes above 0.26 eV in n-type doped region, where In atoms acquire the same formation energy at both tetrahedral sites and the same charge state. This implies a fast diffusion along the t T t path among the tetrahedral sites for In atoms. The In vacancies VIn decrease quickly and monotonically with increasing Fermi level and has a q = 3e charge state at the same time. The most popular vacancy-type defect is VIn in an As-rich environment, but switches to VAs in an In-rich environment at light p-doped region when Fermi level below 0.2 eV. This study sheds light on the relative stabilities of these intrinsic point defects, their concentrations and possible diffusions, which is expected useful in defect-engineering zb-InAs based semiconductors, as well as the material design for radiation-tolerant electronics.
更多
查看译文
关键词
point defects,formation energy,indium arsenide,first-principles,charged defects
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要