EXPERIENCES OF PRODUCTION AND HOMOGENEITY ANALYSIS OF AN AMS C-14 SUCROSE STANDARD FOR HIGH-ACTIVITY MEASUREMENTS

RADIOCARBON(2010)

引用 0|浏览1
暂无评分
摘要
Accurate accelerator mass spectrometry (AMS) measurements rely on standards with well-known isotopic ratios. For radiocarbon measurements, a number of standards with different properties are commercially available, of which the IAEA-C6 sucrose standard with a C-14 value of 150.61 pMC is the most active. When analyzing biological samples resulting from studies using C-14-labeled substances, the activity content can be up to 100 times this value. Thus, there is a need for a standard material with higher activity content than IAEA-C6 for making accurate AMS measurements on this type of sample. This paper describes the attempts of producing a standard with an activity content of about 10 times modem carbon. The material chosen has to be chemically inert, preferably non-toxic, commercially available in C-14-labeled form, and the activity must be homogeneously distributed within the material. Two different standard materials were considered: urea and sucrose. Sucrose was chosen for the new standard, since it is non-toxic, inexpensive, and organic and on combustion, forms only carbon dioxide (CO2) and water (H2O). In this paper, we discuss our experience in the production and homogeneity analysis of this material, from the crystallization of the sucrose solution to the graphitization of the samples. When using an online combustion method and a septa-sealed vial reduction method, the AMS measurements indicated that the activity was not homogeneously distributed throughout the material. Contrary to this, measurements of the sucrose solution prior to recrystallization indicated that the activity was more homogeneously distributed before than after the recrystallization. In order to determine whether the inhomogeneity depended on the graphitization method (i.e. the combustion or the reduction method) or on the material itself 3 different graphitization methods and 2 different methods of recrystallization were tested.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要