Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating

NPJ 2D MATERIALS AND APPLICATIONS(2017)

引用 92|浏览10
暂无评分
摘要
Conventional field-effect transistors (FETs) are not expected to satisfy the requirements of future large integrated nanoelectronic circuits because of these circuits’ ultra-high power dissipation and because the conventional FETs cannot overcome the subthreshold swing (SS) limit of 60 mV/decade. In this work, the ordinary oxide of the FET is replaced only by a ferroelectric (Fe) polymer, poly(vinylidene difluoride-trifluoroethylene) (P(VDF-TrFE)). Additionally, we employ a two-dimensional (2D) semiconductor, such as MoS 2 and MoSe 2 , as the channel. This 2D Fe-FET achieves an ultralow SS of 24.2 mV/dec over four orders of magnitude in drain current at room temperature; this sub-60 mV/dec switching is derived from the Fe negative capacitance (NC) effect during the polarization of ferroelectric domain switching. Such 2D NC-FETs, realized by integrating of 2D semiconductors and organic ferroelectrics, provide a new approach to satisfy the requirements of next-generation low-energy-consumption integrated nanoelectronic circuits as well as the requirements of future flexible electronics.
更多
查看译文
关键词
Electronic devices,Two-dimensional materials,Materials Science,general,Nanotechnology,Surfaces and Interfaces,Thin Films
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要