Identification Of Potential Drug Target In Malarial Disease Using Molecular Docking Analysis

SAUDI JOURNAL OF BIOLOGICAL SCIENCES(2020)

引用 6|浏览9
暂无评分
摘要
Malaria caused by genus Plasmodium, is a parasite which is the main health issue for humans and about half of the population were suffered. An every year, approximately 1.2-2.7 million people died due to malaria globally. Therefore to prevent the spreading of malaria from the glob novel active drugs with specific activities are necessary. The present study aimed to identify novel drug molecule together with the bioinformatic tools for the development of active malarial drugs. As the search for latest anti malarial compound was developed, this work determined six active blends from various drug databases which possess drug-like characteristics and presents a significant anti malarial actions in in-silico level. Compound ID 300238, 889, 76569, 87324, 45678, and Z185397112are a few of the ligands were got from the Toss lab, Maybridge, Cambridge, Life chem, Bitter, and Examine drug databases and docked against hexokinase 1 protein (PDB: 1CZA) with high throughput practical screening (HTVS) using Glide v6.6. Amid the 6 compounds, compound no: 300238 from Toss lab has the greatest docking score of -9.889 kcal/mol targeting 1CZA protein. The active sites of Hexokinase I of protein were determine by using superimposition of the destination and template structure showed similar structural folds and active sites which were decidedly conserved. The quality of hexokinase I protein was considered to be sterically stable where the protein was prepared by utilizing the software protein preparation execute in the Schrodinger suite. Prepared proteins were evaluated using SAVES and the studies of molecular dynamics of the hexokinase, and the GROMACS were performed for protein-ligand complex. The low HOMO-LUMO energy gaps of the compound verified the greater stability of the molecule. Here, the tested drug candidates have good absorption, distribution, metabolism, and excretion (ADME) properties which were established by using QikProp, version 3.4 of Schrodinger. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University.
更多
查看译文
关键词
Anti-malarial activities, Molecular docking, In-silico level, Virtual screening, Hexokinase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要