Stabilization of a potential anticancer thiosemicarbazone derivative in Sudlow site I of human serum albumin: In vitro spectroscopy coupled with molecular dynamics simulation.

Biophysical chemistry(2020)

引用 11|浏览2
暂无评分
摘要
Human Serum Albumin (HSA) is the most important protein in human blood plasma and can acts as a major transporting agent for various drug molecules with flexible binding interaction. To elucidate the interaction of a newly designed potential anticancer thiosemicarbazone based luminophore (E)-1-(4-(diethylamino)-2-hydroxybenzylidene)-4,4-dimethyl-thiosemicarbazide (DAHTS) with HSA under physiological condition, in vitro optical spectroscopic experiments viz UV-Vis absorption, steady state fluorescence, fluroscence anisotropy, time resolved fluorscence (TRF) and cicular dichroism (CD) spectroscopy have been scrutinised. The experimental findings have been corroborated with in silico molecular docking analysis and Molecular Dynamics (MD) simulation. The spectroscopic results demonstrated that the conventionally anion-favouring Sudlow site I of HSA copiously adapt neutral DAHTS molecule with moderate binding affinity. The mean fluorescence lifetime of the sole tryptophan (Trp-214) present in the macromolecule experiences an appreciable diminution with an increase in concentration of the synthesized molecule. DAHTS localize itself close to Trp-214 within subdomain IIA (Sudlow site I) and surrounded by multiple hydrophobic amino acid residues (Val-235, Val-231, Ala-229, Phe-228, Val-325, Phe-326, Leu-327, Met-329, Phe-330, Leu-331, Tyr-332, Leu-346, Leu-347, Val-482, Leu-349, Ala-350, Ala-210, Trp-214, Ala- 213 and Val-216) in HSA. The distinct fluorescence lifetime, diverse pathways and changing rate of population indicates that the rotamerisation of Trp-214 residue is controlled by the guest molecule. Sudlow site I of HSA behaves flexibly and induces an allosteric modulation in the macromolecule resulting a minor deformation in the protein secondary structure as observed in CD (observed 11% change of α-helix content) as well as in MD simulation. The integrated multi-spectroscopic research described herein provides several important information about the binding interaction of a thiosemicarbazone Schiff base with HSA, which can be very significant for thiosemicarbazone based drug designing for academia as well as industry.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要