Information Bottleneck Classification In Extremely Distributed Systems

ENTROPY(2020)

引用 5|浏览17
暂无评分
摘要
We present a new decentralized classification system based on a distributed architecture. This system consists of distributed nodes, each possessing their own datasets and computing modules, along with a centralized server, which provides probes to classification and aggregates the responses of nodes for a final decision. Each node, with access to its own training dataset of a given class, is trained based on an auto-encoder system consisting of a fixed data-independent encoder, a pre-trained quantizer and a class-dependent decoder. Hence, these auto-encoders are highly dependent on the class probability distribution for which the reconstruction distortion is minimized. Alternatively, when an encoding-quantizing-decoding node observes data from different distributions, unseen at training, there is a mismatch, and such a decoding is not optimal, leading to a significant increase of the reconstruction distortion. The final classification is performed at the centralized classifier that votes for the class with the minimum reconstruction distortion. In addition to the system applicability for applications facing big-data communication problems and or requiring private classification, the above distributed scheme creates a theoretical bridge to the information bottleneck principle. The proposed system demonstrates a very promising performance on basic datasets such as MNIST and FasionMNIST.
更多
查看译文
关键词
information bottleneck principle, classification, deep networks, decentralized model, rate-distortion theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要