Low-Energy Electromagnetic Processes Affecting Free-Falling Test-Mass Charging For Lisa And Future Space Interferometers

CLASSICAL AND QUANTUM GRAVITY(2021)

引用 6|浏览6
暂无评分
摘要
Galactic cosmic rays and solar energetic particles charge gold-platinum, free-falling test masses (TMs) on board interferometers for the detection of gravitational waves in space. The charging process induces spurious forces on the test masses that affect the sensitivity of these instruments mainly below 10(-3) Hz. Geant4 and FLUKA Monte Carlo simulations were carried out to study the TM charging process on board the LISA Pathfinder mission that remained into orbit around the Sun-Earth Lagrange point L1 between 2016 and 2017. While a good agreement was observed between simulations and measurements of the TMs net charging, the shot noise associated with charging fluctuations of both positive and negative particles resulted 3-4 times higher that predicted. The origin of this mismatch was attributed to the propagation of electrons and photons only above 100 eV in the simulations. In this paper, low-energy electromagnetic processes to be included in the future Monte Carlo simulations for LISA and LISA-like space interferometers TM charging are considered. It is found that electrons and photons below 100 eV give a contribution to the effective charging comparable to that of the whole sample of particles above this energy. In particular, for incident protons ionization contributes twice with respect to low energy kinetic emission and electron backscattering. The other processes are found to play a negligible role. For heavy nuclei only sputtering must be considered.
更多
查看译文
关键词
gravitational radiation detectors, cosmic rays, electromagnetic processes and properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要