Arabidopsis Calcium-Dependent Protein Kinase 3 Regulates Actin Cytoskeleton Organization And Immunity

Yi-Ju Lu,Pai Li,Masaki Shimono, Alex Corrion,Takumi Higaki, Sheng Yang He,Brad Day

NATURE COMMUNICATIONS(2020)

引用 22|浏览14
暂无评分
摘要
Pattern-triggered immunity and effector-triggered immunity are two primary forms of innate immunity in land plants. The molecular components and connecting nodes of pattern-triggered immunity and effector-triggered immunity are not fully understood. Here, we report that the Arabidopsis calcium-dependent protein kinase CPK3 is a key regulator of both pattern-triggered immunity and effector-triggered immunity. In vitro and in vivo phosphorylation assays, coupled with genetic and cell biology-based analyses, show that actin-depolymerization factor 4 (ADF4) is a physiological substrate of CPK3, and that phosphorylation of ADF4 by CPK3 governs actin cytoskeletal organization associated with pattern-triggered immunity. CPK3 regulates stomatal closure induced by flg22 and is required for resistance to Pst DC3000. Our data further demonstrates that CPK3 is required for resistance to Pst DC3000 carrying the effector AvrPphB. These results suggest that CPK3 is a missing link between cytoskeleton organization, pattern-triggered immunity and effector-triggered immunity. Remodelling of the actin cytoskeleton occurs during plant immune responses to pathogens. Here Lu et al. show that this process requires the calcium-dependent kinase CPK3 which phosphorylates actin depolymerizing factor 4 and is required for both PAMP and effector-triggered immunity in Arabidopsis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要