Fabrication Of Infrared-Compatible Nanofluidic Devices For Plasmon-Enhanced Infrared Absorption Spectroscopy

MICROMACHINES(2020)

引用 2|浏览10
暂无评分
摘要
Nanofluidic devices have offered us fascinating analytical platforms for chemical and bioanalysis by exploiting unique properties of liquids and molecules confined in nanospaces. The increasing interests in nanofluidic analytical devices have triggered the development of new robust and sensitive detection techniques, especially label-free ones. IR absorption spectroscopy is one of the most powerful biochemical analysis methods for identification and quantitative measurement of chemical species in the label-free and non-invasive fashion. However, the low sensitivity and the difficulties in fabrication of IR-compatible nanofluidic devices are major obstacles that restrict the applications of IR spectroscopy in nanofluidics. Here, we realized the bonding of CaF2 and SiO2 at room temperature and demonstrated an IR-compatible nanofluidic device that allowed the IR spectroscopy in a wide range of mid-IR regime. We also performed the integration of metal-insulator-metal perfect absorber metamaterials into nanofluidic devices for plasmon-enhanced infrared absorption spectroscopy with ultrahigh sensitivity. This study also shows a proof-of-concept of the multi-band absorber by combining different types of nanostructures. The results indicate the potential of implementing metamaterials in tracking several characteristic molecular vibrational modes simultaneously, making it possible to identify molecular species in mixture or complex biological entities.
更多
查看译文
关键词
nanofluidics, IR absorption spectroscopy, SEIRA, metamaterials, MIM perfect absorber
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要