Quantized state feedback stabilization of nonlinear systems under Denial-of-Service

AUTOMATICA(2022)

引用 2|浏览4
暂无评分
摘要
This paper studies the resilient control of networked systems in the presence of cyber attacks. In particular, we consider the state feedback stabilization problem for nonlinear systems when the state measurement is sent to the controller via a communication channel that only has a finite transmitting rate and is moreover subject to cyber attacks in the form of Denial-of-Service (DoS). We use a dynamic quantization method to update the quantization range of the encoder/decoder and characterize the number of bits for quantization needed to stabilize the system under a given level of DoS attacks in terms of duration and frequency. Our theoretical result shows that under DoS attacks, the required data bits to stabilize nonlinear systems by state feedback control are larger than those without DoS since the communication interruption induced by DoS makes the quantization uncertainty expand more between two successful transmissions. Even so, in the simulation, we show that the actual quantization bits can be much smaller than the theoretical value. (C)& nbsp;2022 Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Nonlinear systems,Denial-of-Service attacks,Quantization,Cyber-physical systems,Lyapunov function
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要